I work on convergence analysis of Markov chains and the theory of Markov chain Monte Carlo (MCMC).

**Articles**

Q. Qin, N. Ju, G. Wang (2024+), Spectral gap bounds for reversible hybrid Gibbs chains. arXiv.

Q. Qin (2024+), Geometric ergodicity of trans-dimensional Markov chain Monte Carlo algorithms. arXiv.

Q. Qin (2024+), Analysis of two-component Gibbs samplers using the theory of two projections, *Annals of Applied Probability*, to appear. arXiv.

H. Li, Q. Qin and G. L. Jones (2024), Convergence analysis of data augmentation algorithms for Bayesian robust multivariate linear regression with incomplete data, *Journal of Multivariate Analysis*. arXiv.

Q. Qin and G. Wang (2024), Spectral telescope: Convergence rate bounds for random-scan Gibbs samplers based on a hierarchical structure, *Annals of Applied Probability*. arXiv.

Q. Qin and J. P. Hobert (2022), Geometric convergence bounds for Markov chains in Wasserstein distance based on generalized drift and contraction conditions, *Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques*. arXiv.

G. L. Jones and Q. Qin (2022), Markov chain Monte Carlo in Practice, *Annual Review of Statistics and Its Application*. link.

Q. Qin and G. L. Jones (2022), Convergence rates of two-component MCMC samplers, *Bernoulli*. arXiv.

Q. Qin and J. P. Hobert (2022), Wasserstein-based methods for convergence complexity analysis of MCMC with applications, *Annals of Applied Probability*. arXiv.

Q. Qin and J. P. Hobert (2021), On the limitations of single-step drift and minorization in Markov chain convergence analysis, *Annals of Applied Probability*. arXiv.

Q. Qin and J. P. Hobert (2019), Estimating the spectral gap of a trace-class Markov operator, *Electronic Journal of Statistics*. arXiv.

Q. Qin and J. P. Hobert (2019), Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit regression, *Annals of Statistics*. arXiv.

J. P. Hobert, Y. J. Jung, K. Khare and Q. Qin (2018), Convergence analysis of MCMC algorithms for Bayesian multivariate linear regression with non-Gaussian errors, *Scandinavian Journal of Statistics*. link.

Q. Qin and J. P. Hobert (2018), Trace-class Monte Carlo Markov chains for Bayesian multivariate linear regression with non-Gaussian errors, *Journal of Multivariate Analysis*. arXiv.